

MATHEMATICS (EXTENSION 2)

2012 HSC Course Assessment Task 1 November 28, 2011

General	•		, •	
(- eneral	ın	stru	Ctio	ns

- Working time 55 minutes.
- Commence each new question on a new page. Write on both sides of the paper.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please ✓)

- \bigcirc 12M4A Mr Weiss
- 12M4B Mr Ireland
- 12M4C Mr Fletcher

NAME: # BOOKLETS USED:

Marker's use only.

QUESTION	1	2	3	Total	%
MARKS	20	20	18	58	

Question 1 (20 Marks)

Commence a NEW page.

Marks

 $\mathbf{2}$

- (a) i. Find the values of the real numbers a and b such that $(a+ib)^2=5-12i$.
 - ii. Hence or otherwise, solve the equation $ix^2 + 3x + (3 i) = 0$.
- (b) Evaluate $(1+i)^9$.
- (c) On an Argand diagram, sketch the locus of a point which satisfies

i.
$$|z-i|=4$$
.

ii.
$$(z-1)(\overline{z}+1)=3$$
.

iii.
$$|z+2| = |z-2|$$
.

iv.
$$\operatorname{Arg}\left(\frac{z+3i}{z-1}\right) = \frac{\pi}{6}$$
.

- (d) i. If $z_1 = 3 + 4i$ and $|z_2| = 13$, find the greatest value of $|z_1 + z_2|$.
 - ii. If $|z_1 + z_2|$ has its greatest value and also $0 < \arg z_2 < \frac{\pi}{2}$, express z_2 in the form a + ib where a and b are real.

Question 2 (20 Marks)

Commence a NEW page.

Marks

(a) If ω represents one of the complex cube roots of unity, evaluate

3

$$(1-\omega^8)(1-\omega^4)(1-\omega^2)(1-\omega)$$

- (b) In an Argand diagram, the points P, Q and R represent the complex numbers z_1 , z_2 and $z_2 + i(z_2 z_1)$ respectively.
 - i. Show that $\triangle PQR$ is right-angled.

 $\mathbf{2}$

ii. Find in terms of z_1 and z_2 the complex number represented by the point S such that PQRS is a rectangle.

2

(c) i. Use De Moivre's Theorem to show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

 $\mathbf{2}$

ii. Deduce that $8x^3 - 6x - 1 = 0$ has solutions $x = \cos \theta$, where $\cos 3\theta = \frac{1}{2}$.

3

iii. Find the roots of $8x^3 - 6x - 1 = 0$ in the form $\cos \theta$.

 $\mathbf{2}$

iv. Hence evaluate $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9}$.

2

(d) For the complex numbers

$$z_1 = (1+i)^2$$
 and $z_2 = \sqrt{2} \left[\cos \left(-\frac{5\pi}{6} \right) + i \sin \left(-\frac{5\pi}{6} \right) \right]$

i. Express z_1 in modulus-argument form.

1

ii. Express z_2 , $\overline{z_2}$ and iz_1 in Cartesian form.

3

Ques	stion 3 (18 Marks)	Commence a NEW page.	Marks
(a)	i. Use the remainder theorem	to find a factor of $x(x-1) - a(a-1)$.	1
	ii. By division or otherwise, fine	d the other factor.	2
(b)	Prove that if the polynomial $P(x)$ root of multiplicity $(m-1)$.	has a root of multiplicity m then $P'(x)$ has a	a 3
(c)	Given $(x-2)^2$ is a factor of x^3 – hence factorise the polynomial over	$3x^2 + ax + b$, find the value of a and b and c \mathbb{C} .	d 4
(d)	The equation $x^3 + 3x^2 + 4x - 7 =$ with roots 2α , 2β and 2γ .	= 0 has roots α , β and γ . Find the equation	n 3
(e)	If $(1+i)$ is a root of the equation a values of a and b and hence solve to	$x^3 - ax^2 + bx - 4 = 0$ where $a, b \in \mathbb{R}$, find the che equation.	5

End of paper.

dold HSC - Ext. 2 - Task 1

SUGGESTED

(a) (i)
$$(a+ib)^2 = 5-12i$$

$$\begin{cases} a^2 - b^2 = 5 \\ 2ab = -12 \end{cases}$$

$$a^{1} - (\frac{b}{a})^{2} = 5$$

$$a^{4} - 5a^{1} - 36 = 0$$

$$(a^2-q)(a^2+q)=0$$

(Note: answer can also be written as ± (3-2i)) But "a=±3, b=±2" loses a mark.

(i)
$$ix^2 + 3x + (3-i) = 0$$

$$\frac{1}{2} (1+i)^{8} = (2i)^{7} = 16$$

$$\frac{1}{2} (1+i)^{9} = \frac{16(1+i)}{16(1+i)} = \frac{16+16i}{16+16i}$$

This is a circle, centre (0,1), radius 4

Locus is a major are; in Q4; and endpoints are open circles at (0,-3) & (1,0).

(d) (i)
$$|Z_1 + Z_2| \le |Z_1| + |Z_2|$$
 (\triangle inequality)
$$= |3^2 + 4^2| + |3|$$

$$= |8|$$
i.e. max. value is $|8|$

2,+ 22 has its max when (ii) collenear = R(3+4i) y 1 (3K)2+ (4K)2 = 132 13 $\overline{Z}_2 = \frac{13}{5} \left(3 + 4i \right)$ = 39 + 52 i

7

2 points

Thus the bocus comprise

300

and

x + + + = +

Equating he and Im parts,

The Locus is all those points equal distant from (-2,0) and (2,0) (x=0) yakis 2+2 = 2+2

I axes are difficult to show when a locus, So best to unite he equation x=0.

٠,

20

 $z^{2} + y^{2} - (x-iy) + (x+iy) - 1 = 3$

d

: x2+y2 + 2yi

$$\begin{array}{lll}
(2) & (a) & (a) & (b) & (b) & (c) & (d) & (d$$

$$(c) i/(\cos \theta + i \sin \theta)^{3} = \cos^{3} \theta + 3i \cos^{3} \theta \sin^{3} \theta$$

$$-3 \cos \theta \sin^{3} \theta - i \sin^{3} \theta$$

$$(a) \cos (\cos \theta + i \sin \theta)^{3} = \cos 3\theta + i \sin^{3} \theta$$

$$(i-\omega)^{3} = \cos^{3} \theta - 3 \cos (i-\cos^{3} \theta)^{3}$$

$$= 4 \cos^{3} \theta - 3 \cos \theta$$

$$ii/ Now 8 \cos^{3} \theta - 4\cos \theta - i = 0$$

$$4 \cos^{3} \theta - 3\cos \theta = \frac{1}{3}$$

: cos 30 = 1

$$PQR = \frac{\pi}{2}$$

iv) costs of $8x^{3}-6x+1=0$ are as $\frac{\pi}{9}$ as $\frac{5\pi}{9}$, as $\frac{7\pi}{9}$ iv)

cus $\frac{5\pi}{9}=-as\frac{4\pi}{9}$ cus $\frac{7\pi}{9}=-as\frac{2\pi}{9}$

in/

. A PQR is right angled at Q

(d)
$$i/Z_i = (1+i)^2$$

= 2i
= 2 cis $\frac{\pi}{2}$

If PQRS is a rectangle
$$\overrightarrow{PS}$$
 II \overrightarrow{QR} and hence \overrightarrow{PS} also represents $i(z_2-z_1)$

Now \overrightarrow{OS} is the vector sum of \overrightarrow{OP} and \overrightarrow{PS}

Hence S represents $z_1 + i(z_2-z_1)$

$$\vec{u}/Z_{2} = \sqrt{2} \left(-\frac{\sqrt{3}}{2} - \frac{i}{2}\right)$$

$$= -\sqrt{6} - \frac{\sqrt{2}i}{2}$$

$$= -\sqrt{6} + \frac{\sqrt{2}i}{2}$$

Q3) (a) if
$$f(x) = x(x-1) - a(a-1)$$
 (c)
$$f(a) = a(a-1) - a(a-1)$$

$$= 0$$

$$\therefore (x-a) \text{ is a factor}$$

iif
$$\frac{x + (a-1)}{x^2 - x - a^2 + a}$$

$$\frac{ax - x}{ax - x - a^2 + a}$$

$$\therefore f(x) = (x-a)(x+a-1)$$
(c)
$$f(x) = x^3 - 3x^2 + ax + b$$

$$f'(x) = 0 \text{ because } (x-2) \text{ is a downle factor}$$

$$0 = 12 - 12 + a \implies a = 0$$

$$f(x) = (x-2)^2(x+1)$$
(d)
If $x = 2x, 2j^3, 2k$
then $\frac{x}{2} = \alpha, \beta, k$

$$x^3 + 3x^2 + 4x - 7 = 0$$
thus
$$(\frac{x}{2})^3 + 3(\frac{x}{2})^2 + h(\frac{x}{2})^{-2} = 0$$

$$\frac{x^3}{5} + 3\frac{x^2}{4} + 2x - 7 = 0$$

x3 + 6x2 +16 x - 56 =0

If It is a root so is I-i Let the other root be & then it it it it a a ×+2 = a (i+i)(i-i) = 4 .. a = 4 roots are 1+i, 1-i, 2 (1+i)(1-i) = 2 (1+i) + 2(1-i) = 5 Let the root of multiplicity m be & **(b)** P(n) = (x-x)". Q(x) Q(x) #0 · P'(n) = m (n-x) (2/2) + (x-2) (2/2) = (x-x) m Q(x)+ (12-x)Q(x) = (n-x) m-1, s(n) · P'(n) has a noot

of melt. (m-)